S-25 March, 2013 AC after Circulars from Circular No.153 & onwards

DR. BABASAHEB AMBEDKAR MARATHWADA UNIVERSITY
CIRCULAR NO.ACAD/NP/B.Sc.-Ist Yr./SEM.-I & II/157/2013

It is hereby notified for information of all concerned that, on the recommendations of the Boards of Studies, Ad-hoc Boards, and Faculty of Science, the Academic Council at its meeting held on 25-03-2013 has accepted the following revised syllabi for B.Sc. First Year progressively under the Faculty of Science:-

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Revised Syllabus</th>
<th>Semester-I & II,</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>B.Sc. [Physics]</td>
<td></td>
</tr>
<tr>
<td>[3]</td>
<td>B.Sc. [Industrial Chemistry]</td>
<td></td>
</tr>
<tr>
<td>[5]</td>
<td>B.Sc. [Chemistry]</td>
<td></td>
</tr>
<tr>
<td>[6]</td>
<td>B.Sc. [Botany]</td>
<td></td>
</tr>
<tr>
<td>[7]</td>
<td>B.Sc. [Electronics]</td>
<td></td>
</tr>
<tr>
<td>[8]</td>
<td>B.Sc. [Fisheries]</td>
<td></td>
</tr>
<tr>
<td>[9]</td>
<td>B.Sc. [Microbiology]</td>
<td></td>
</tr>
<tr>
<td>[12]</td>
<td>B.Sc. [Zoology]</td>
<td></td>
</tr>
<tr>
<td>[14]</td>
<td>B.Sc. [Home Science]</td>
<td></td>
</tr>
</tbody>
</table>

This is effective from the Academic Year 2013-2014 and onwards.

These syllabi are available on the University Website www.bamu.net

All concerned are requested to note the contents of this circular and bring the notice to the students, teachers and staff for their information and necessary action.

University Campus,
Aurangabad-431 004.
Ref.No.ACAD/NP/B.Sc.-Ist Year/
Sem-I & II/2013/5132-541
A.C.S.A.I.No.327[9].

Date:- 08-05-2013.

Director,
Board of College and
University Development.
S-25 March, 2013 AC after Circulars from Circular No.153 & onwards

:: [2] ::

Copy forwarded with compliments to :-

1] The Principals, affiliated concerned Colleges,
Dr. Babasaheb Ambedkar Marathwada University.

2] The Director, University Network & Information Centre, UNIC, with
a request to upload the above all syllabi on University Website
[www.bamu.net].

Copy to :-

1] The Controller of Examinations,

2] The Superintendent, [B.Sc. Unit],

3] The Superintendent, [B.A. Unit],

4] The Superintendent, [Eligibility Unit],

5] The Programmer [Computer Unit-1] Examinations,

6] The Programmer [Computer Unit-2] Examinations,

7] The Director, [E-Suvidha Kendra], in-front of Registrar's Quarter,
Dr. Babasaheb Ambedkar Marathwada University,

8] The Public Relation Officer,

9] The Record Keeper,
Dr. Babasaheb Ambedkar Marathwada University.

S*/080513/
Revised Syllabus of

B.Sc. Ist Year

Microbiology

Semester-I & II

[Effective from 2013-14 & onwards]
Course Structure

<table>
<thead>
<tr>
<th>YEAR</th>
<th>SEMESTER</th>
<th>PAPER NUMBER</th>
<th>PAPER TITLE</th>
<th>Hours</th>
<th>MARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>I</td>
<td>Paper – I</td>
<td>Fundamentals of Microbiology</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paper - II</td>
<td>Microbiological Techniques & General Microbiology</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paper - III</td>
<td>Practical [based on Paper- I & II]</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>II</td>
<td>Paper – IV</td>
<td>Cytology and general Microbiology</td>
<td>45</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paper – V</td>
<td>Basic Biochemistry</td>
<td>45</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paper – VI</td>
<td>[based on Paper No.IV & V] Practical</td>
<td>45</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

Total: 270 300
B.Sc. First Year Semester – I
Paper I .Fundamentals of Microbiology

Unit - 1

1 Scope & relevance of Microbiology
 i) Definition & concepts
 ii) Types of microorganism
 iii) Distribution of microorganisms in nature

2. Development of Microbiology as a Scientific Discipline
 i) Early observation of microorganisms
 ii) Spontaneous generation conflict : Contribution of scientists
 iii) Recognition of the microbial role in diseases. Koch’s postulates
 iv) Recognition of microbial role in fermentations.
 v) Discovery of microbial effects on organic and inorganic matter.
 vi) Pure culture concept.
 vii) Aseptic surgery

Unit – 2 General characteristics of microorganisms.

2.1 General principles (Bacteria)
 i) Taxonomic rank
 ii) Classification system
 iii) Numerical taxonomy
 iv) Major characteristics used in taxonomy. Morphological, Physiological, Immunological, Metabolic, Etiological. Compositions of proteins, composition of nucleic acids, hybridization, nucleic acid sequencing, identification of organisms based on 16srRNA sequencing, 16S rDNA sequencing
 v) Bergey’s manual of systematic Bacteriology, General characteristics enlisting all parts with major characters & examples. (Vol I to IV)
Unit – 3 General characteristics of Microorganisms

3.1 Structure, Reproduction (Lytic & Lysogenic cycle) classification of Viruses. (LHT system)
3.1 General characters of Fungi (including yeasts)
3.2 General characters of Actinomycetes
3.3 General characters of Algae
3.4 General characteristics of Mycoplasma and Rickettsia.
3.5 General characteristics of Archaebacteria

Unit – 4

4.1 Microscopy
i) Definitions: Magnification, resolving power, depth of focus, focal length, numerical aperture.
ii) Objectives Low, high & oil immersion.
iii) Oculars: function, Huygenian, Ramsden, Hyperplane & compensating.
iv) Condensers: Abbe, variable focus cordiod, parabolic & their functions.
v) Iris diaphragm.

4.2 Principles, construction using ray diagram, application and comparative study of:

i) Compound Microscope
ii) Electron Microscope – SEM, TEM

4.3 Principles, ray diagram & applications.

i) Phase contrast microscope.
ii) Dark field microscope.
iii) Fluorescent microscope.
iv) Advanced applications of microscopes.
Semester – I Paper II
Microbiological Techniques & General Microbiology

Unit – 1 Stains and dyes.
i) Definition: stain, dye, chromogen, chromophore, auxochrome, acidic and basic stains, simple and differential staining. (Gram’s and Acid fast staining), natural stains, mordant, decolourizer, counter stains.

ii) Physicochemical basis of staining.

iii) Fixatives and fixation of smears.

iv) Staining of Fungi.

v) Principle, application and methodology of Negative, Monochrome and Grams Staining

Unit – 2 Cultivation of microorganisms.
i) Properties of a good culture medium.

ii) Definition, concept, use and types of different culture media. Synthetic, non synthetic, natural, selective, differential, enriched, enrichment, assay, minimal, maintenance, and transport media.

iv) Role of Buffers in culture media.

v) Media used for cultivation of bacteria, fungi, actinomycetes, yeasts, algae and photosynthetic bacteria. (at least two)

Cultivation of anaerobes
i) Principle and examples.

ii) Methods (at least 2)

Unit – 3 Microbiological Techniques
1. Pure culture techniques
i) Development of pure culture

ii) Aseptic techniques, streak, pour and spread plate methods, single cell isolation.

iii) Significance
2. **Sterilization techniques**
 i) Pattern of Microbial death – concepts.
 ii) Sterilization by physical methods
 - High temperature, canning and pasteurization.
 - Low temperature.
 - Non ionizing and ionizing radiations.
 - Bacteriological filters.
 iii) Disinfection by chemical means;
 Disinfectants and antiseptics:
 Effectiveness, mode of action & application.
 Phenolics, alcohols, halogens, heavy metals, quaternary ammonium compounds, aldehydes.
 iv) Sterilization using gases
 sulfur dioxide, ethylene oxide, Beta propiolactone.

Unit – 4 **Structural Organization of microorganisms.**

A] **Fundamental categories of microorganisms.**
 i) Procaryotic & Eucaryotic cell concepts and differential account

B] **Role of microorganisms:**

1.1 In agriculture : As biofertilizers, bioinsecticides, in soil improvement (texture, water holding capacity) as geochemical agents, microbe plant interactions (phyllosphere, rhizosphere, mycorrhizal and nodule formation). Plant diseases : list of common plant diseases with their causative agents.

1.2 In human and animal health : list of common bacterial, rickettsial, fungal and viral diseases.(with causative agents) in human beings, role of normal flora of human body, antibiotics, vaccines and antisera.

1.3 In industries : list of microbial products (and producers) produced on industrial scale, role of contaminants.

1.4 In food processing : list of common fermented food & milk products with their representative organisms. Food spoilage, list of organisms causing changes in texture, colour, aroma, taste & nutritional value of the food products. List of food poisoning & food infection causing microorganisms.
B.Sc. First Year Semester I
Paper III - Practical
[based on Paper- I & II]

1) Microscopy :
 i) Different parts of a compound microscope.
 ii) Use and care of compound microscope.
 iii) Visit to see an electron microscope.

2) Construction, operation and utility of laboratory equipments
 i) Autoclave
 ii) Hot air oven
 iii) Incubator
 iv) pH meter
 v) High speed centrifuge
 vi) Colorimeter/spectrophotometer
 vii) Anaerobic jar
 viii) Bacterial Filters
 ix) Laminar air flow.

3) Demonstration of presence of bacteria from – soil/ water/ air/ milk

4) Demonstration of yeast, fungi, actinomycetes, algae, protozoa

5) Microscopic examination of bacteria:
 i) Monochrome staining
 ii) Negative Staining
 iii) Gram’s Staining

6) Hanging drop technique to demonstrate bacterial motility

7) Micrometry

8) Qualitative tests for:
 i) Carbohydrates – Benedict’s test.
 ii) Protein – Biuret test.
 iii) Nucleic acid – Diphenylamine(DNA) and orcinol (RNA) tests
B.Sc. First Year
Semester II
Paper-IV Cytology and general Microbiology

Unit – 1 : 1. Bacterial morphology and ultra structure.
 1.1 Cytology of a typical bacterial cell.
 i) Morphology – size and arrangement of bacterial cells.
 ii) Structure, chemical compositions and functions of :
 1. Capsule and slime layer
 2. Cell wall : Gram positive and Gram negative bacteria
 3. Unit membrane
 4. Flagella : Arrangement, mechanism of flagellar movement,
 Chemotaxis, phototaxis, Magnetotaxis.
 5. Pili
 6. Ribosomes.
 7. Nuclear material, Mesosome
 8. Reserved food material: Poly beta hydroxy butyric acid granules,
 glycogen and polyphosphate granules.
 1.2 Bacterial cell division
 i) Binary fission

Unit – 2 Nutritional Requirements
 i) Concept.
 ii) Common nutritional requirements – Energy sources, C, N, P,
 O,S, micronutrients, growth factors, water etc.
 iii) Classification on the basis of carbon and energy

Bacterial growth
 i) Concept of Growth
 ii) Definition
 iii) Bacterial growth curve
 iv) Phases of growth
 v) Mathematics of growth
 vi) Diauxy
 vii) Factors influencing bacterial growth (temp, pH, oxygen and
 nutrients).
 viii) Synchronous growth
 ix) Continuous culture
 x) Measurement of bacterial growth
Unit – 3 Microbial Physiology

1. Endospore – types, sporulating bacteria ,architecture of endospore, sporulation process , germination process.

2. Uptake of nutrients
 i) Passive diffusion
 ii) Facilitated diffusion
 iii) Active transport mechanism.
 iv) Group translocation
 vi) Uptake of amino acids and metals

3. Anaerobic respiration :
 NO₃, SO₄ and CO₂ as electron acceptors.

4. Bacterial photosynthesis :
 i) Photosynthetic bacteria,
 ii) Photopigments and associated carriers,
 iii) Photosynthetic apparatus and its mechanism
 iv) Cyclic and non cyclic photophosphorylation ,
 v) Calvin cycle, and reductive carboxylic acid cycle for CO₂ fixation.
 vi) Differences between bacterial and plant photosynthesis.

Unit – 4 Advances in Microbiology

a) Genetic engineering.
b) Bioinformatics
c) Nano biotechnology
d) Bioaugmentation
e) Biostatistics
f) Enzymes and cell immobilization
Semester II

Paper-V Basic Biochemistry

Unit – 1 Carbohydrates
i) Definition and classification.
ii) Properties – optical and chemical.
iii) Structure of glucose: ring structure, Haworth & fisher’s projection, pyranoses, furanoses, isomers, mutarotation.
iv) Triose, pentose, hexose, heptoses - examples & structures.
v) Derived monosaccharides: glycosides, furano acids, sugar phosphates, uronic acids, sugar alcohol.
vi) Disaccharides, glycoside linkage, lactose, maltose, sucrose.
vii) Oligosaccharides – Trisaccharides, structure of raffinose.
viii) Polysaccharides – Homo and heteropoly saccharides, structures starch, cellulose, mucopolysaccharides.
ix) Biological significance

Unit – 2 Lipids
i) Classification simple compounds.
ii) Chemistry of fatty acids, unsaturated and saturated fatty acids, triglycerides, saponification alkyl ether phospho glycerides, sterols, cholesterol, protaglandins, glycol lipids.
iii) Function of lipids.

Unit – 3 Proteins
i) Classification based on properties of solubility & heat, coagulability. Fibrous, globular proteins and functions.
ii) Protein structures; conformation & configuration, primary structure determination, secondary structure π-helix & β-pleated sheet, tertiary & quaternary structure.
iii) Classification of amino acids: based on acid – base properties.
iv) Properties of amino acids – solubility, ampholyte, Zwitterions isoelectric pH.
v) Peptide bonds – Concepts of biological peptide bond formation, types.
vi) Enzymes – Concepts, definition, nature, active site, properties, physico-chemical factors contributing to catalytic efficiency of enzymes.
Unit – 4

Nucleic acids

i) Structure of nitrogen bases & base pairing.

ii) Structure of nucleosides & nucleotides, ribose, deoxyribose sugars.

iii) DNA : properties, forms , structure, function as genetic material.

Types of DNA

iv) RNA : Structure, function, types (r-RNA, m-RNA, t-RNA)

v) Comparative account of DNA & RNA.

pH & buffers. pH titration curve, P_K value.
B.Sc. First Year Semester II
Paper-VI Practical

[based on Paper No.IV & V]

1) Structural staining –
 ♦ Bacterial flagella by Patel, Kulkarni and Gaikwad method
 ♦ Capsule staining – Maneval’s method.
 ♦ Cell-Wall staining- Chance’s method.
 ♦ Spore staining – Schaefer & Fulton’s method.
 ♦ Lipid (PHB) granule staining- Burdon’s method.
 ♦ Metachromatic granule staining- Albert and Neusser’s method.
 ♦ Preparation of culture media.
 i) Nutrient broth and agar
 ii) MacConkeys broth and agar
 iii) Sugar media
 iv) Potato dextrose agar
 v) Blood agar
 vi) Photosynthetic bacterial growth medium

2) Sterility checks for Autoclaving

3) Isolation of microorganisms from :
 i) Air
 ii) Water
 iii) Soil
 iv) Milk

4) Isolation of bacteria from mixed cultures (streak plate method)
5) Cultivation of Anaerobes
6) Effect of physical and chemical agents on growth of bacteria.
 i) pH
 ii) Temperature.
 iii) Heavy metal ions (oligodynamic action)
 iv) UV rays.
 v) Antibiotics.